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A function of residence time distribution is derived by the method of generalized Heaviside 
series and an approximative procedure for the dispersion model coupled with ideal mixing 
boundary conditions, for "closed-closed" reactor, were used. Model is characterized by two 
parameters: Peclet number and volume fraction of the region of dispersion flow. The solution 
is studied numerically and the advantages of the approximative solution are discussed in detail. 

Dispersion models describing deviations of liquid flow from plug flow in the reactor are very 
frequent in literature 1 - 5. Solutions of equations describing the modelled reactor depend on used 
boundary conditionsl • Danckwerts2 has for the first time specified the boundary conditions and 
has given solution of the dispersion model reactor in which the first order reaction takes place 
in steady state. Later Bischoff3 has extended the conclusions for solution of equations describing 
the dispersion model for the boundary conditions according to Danckwerts to the reaction 
of an arbitrary order. Solutions of these equations (Danckwert's boundary conditions) describing 
the unsteady state of the model reactor have been studied in detail by Van Cauwenbergh4

. 

The dispersion models are usually one-parameterl -
4

. At present are used for the mathematical 
description of the reactor also muitiparameter models whose advantages as compared to those 
one-parameter lie in greater flexibility which requires more theoretically founded approach 
to the solution of these mathematical models. The problems are also met in investigation of con­
vergence of infinite series which are used as the solutions. 

One of the possible two-parameter models is described in this paper. 

DISPERSION MODEL COUPLED WITH IDEAL M_XING 

Let us consider the reactor of finite length where the liquid successively flows through 
the region of dispersion flow and ideal mixing, see Fig. 1. 

The material balance of the tracer in the considered model in the dimensionless 

form can be written as 
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cp E <0, 1), Pe ~ 0. (2) 

In case the input signal has the form of the D-function and concentration of the 
tracer in time t = 0, is zero the initial and boundary conditions, for "closed-closed" 
reactor in the dimensionless form are 

(3) 

(4) 

ac1(z , 8)1 = ° . 
az Z=q> 

(5) 

Equations (1) and (2) for the initial and boundary conditions (3)-(5) can be solved 
by the method of Laplace transformation. The Laplace transformation of concentra­
tion at the outlet from the reactor then has the form 

where 

a = (1 + 4cpsjPe)1/2. (7) 

_ w ____ 

G'1 (1-fN 
x-L 

FIG.! 

Dispersion Model Coupled with Ideal Mixing 
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METHOD OF G ENERALISED HEAVISIDE EXPANSION THEOREM 

By the inverse transformation of Eq. (6), by use of the generalised Heaviside 
Expansion Theorem for calculation of the residence time distribution function of this 
model i.e. of the so-called E-function, which denotes the magnitude or distribution 
density of "age" of all elements at the outlet from the system, the relation is obtained 

£(0) = 4a' exp - <P - --
[

pe 0 JI 
2 1 - <p 

1((1- <p){(1 + a')2 exp (pe;'<p) - (1-a'Yexp (_ pe;'<p)}) + 

(8) 

where 

(9) 

4 [2 (pe)2J 
Sk = - <p Pe Ak + 4 (JO) 

(ll) 

and where At are positive roots of the transcendent equation 

(12) 

It is possible to prove that for <p = 1, Eq. (8) is reduced to the form given by Dilman 
and coworkers1 for the "closed-closed" dispersion model and for <p = 0 Eq. (8) is. 
reduced to the E-function of the ideally mixed reactor. 

For the first two moments of E-function the relations hold 

(13) 
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""2 = cp4 {1 + _2_ - _2_ [1 - exp (-Pe cp)J} + 
Pe cP (Pe cp)2 

+ ~ (1 - cp) + cp(1 - 2cp)(2cp - 2). (14) 
Pe 

In the case that for the expression below the second root in Eq. (9) there holds 

1 - 4cp ;;::: 0 
Pe (1 - cp) -

(15) 

after arrangement the inequality is obtained 

cp ~ Pe/(Pe + 4) (16) 

and it is possible for calculation of the E-function to use directly Eq. (8). If the ine­
quality holds 

1 - 4cp < 0 
Pe (1 - cp) 

(17) 

from which for the volume fraction in the region of dispersion flow results 

cp > Pe/(Pe + 4) (18) 

it is advantageous for calculation of the E-function to arrange Eq. (8) into the form 

E(e) = 2a 1 exp [~ cp - ~JI 
2 1 - cp 

1((1 - cp) {(1 - aD sin Pe ;ICP + 2a 1 cos Pe ;ICP}) + 

co 16)'k exp [¥ cP + SkeJ 
+ k~l Pe H;(Sk) , (19) 

where 

(I 4cp 1)1/2 
a 1 = 1 - Pe (1 _ cp) • (20) 

In Eqs (8) and (19) which were derived for calculation of the E-function (when 
a' is the real or imaginary number) appears the sum of an infinite series. The conver­
gence of this infinite series is slow in the region of small values of e for large values 
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of Pe. In the calculation of the sum of the infinite series is the infinite number of terms 
of the series substituted by a finite number so the made error is negligible. Ten terms 
of the sum were used here for calculation of the f-function. Calculation by use of these 
relations is very cumbersome and inconvenient. 

In Fig. 2 is plotted the dependence of f-functions calculated as the sum of ten 
terms of the sum (8) for Pe = 30 and q; = 0-4; 0'5; 0·6; 0'7; and 0·8. 

ApPROXIMATIVE SOLUTION OF THE MODEL 

Analytical solution of the model given by Eq. (8) or (9) has the form of slowly con­
verging sum, which is not suitable for calculation of the f-function. One of the fre­
quently used procedures of derivation of the approximative solution, which is prefer­
ably used to those exact solutions is here analysed in detail. 

Let us arrange Eq. (6) into the form 

Cis) = 4 exp (Pef2 <p) a 
(1 - (p) {s + [1/(1 - q;)J} 

{ (
peaq;) (-peaq;)}-l . (1 + a)2 exp -2- - (1 - a)2 exp -2- (21) 

The right-hand side of Eq. (21) can be expanded into the sum and written 

C
2
(s) = 4 exp (Pe q;/2) a f (1 - a)2k exp [_ Pe aq; (2k + l)J. 

(1 - q;) {s + [1/(1 - q;)J} k=O (1 + a)2k+2 2 
(22) 

This infinite series is absolutely convergent, when the real part s is positive and 
each term of this sum can be inverted to the form corresponding to its original 

function. 

FIG. 2 

Exact Solution of E-function of Dispersion 
Model Coupled with Ideal Mixing as the Sum 
of 10 Terms of the Series (8) 

£,8 
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When the inverse transformation of the series (22) is performed for a greater 
number of terms (k = 1,2,3, ... ) the resulting function of the original should have 
a complex form and for this reason it should not have any preferences to the rela­
tions (8) or (19) as concerns the simplicity of calculation of residence time distribu­
tion function. 

When only the first term of the sum (22) is considered (i.e. k = 0) the relation 
holds 

C
2
(s) '" 4 exp (Pe <p/2) a exp (-Pe a<p/2) (23) 

(1 - <p) {s + [1/(1 - <p)]} (1 + a)2 

When instead of the infinite series (22) only the first term of this series is considered, 
after application of relations c) to f) the solution of residence time distribution 
function is obtained. This solution is called "approximative" and has the form 

£(e) = -- - exp - 1 - - h(e) - -- - -- - - . 2 Jpe [pe <p (e)] 2 Jpe [1 peJ 
1 - <p <p 2 2 1 - <p <p 1 - <p 4<p 

. exp - - -- h(p) exp p -- - - dp , 
[

pe <p e] fe [ (1 pe)] 
2 1-<p 0 1-<p 4<p 

(24) 

where 

h(p) = 2 J; exp ( - p:;3) - (J~ p + <p JPe <p) exp [P~ <p ( 1 - ~)] . 

. erfc {<p JPe <p + Jpe p} . 
2 Jp 4<p 

(25) 

For the numerical calculation of the function erfc (y), when y E (0; I) or y E (1; (0) 
the series given in study9 were used. 

The approximative solution of the £-function of the model, Eq. (24) is plotted 
in Fig. 3. 

It is obvious that the approximative solution of the model, Eq. (24) will not give 
satisfactory results for arbitrary values of parameters Pe and <po The conditions for 
which the results are calculated from Eq. (24) with sufficient accuracy, can be de­
termined as follows: The simplified form of the series on the right hand side ofEq. (22) 
is denoted R((sll/li + 1)2), so the relation if obtained 

( S )1/l. co ( S )1/2 { ( S )l/l } R 2 + 1 = ~ Jk 2 + 1 exp -1/12 2 + 1 (2k + 1) , 
1/11 k-O 1/11 1/11 

(26) 
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where 

( 

S )1/2 
Jk -;;;: + 1 

1 - - + 1 
[ ( 

S )1/2J2I< 
I/1i 

[ ( 
S )1/2J2k+2 

1 + 2 + 1 
1/11 
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The inverse transformation of the series (26) has been performed so that at first 
the property of the Laplace transformation given in Table I point a) has been used 
and then have been successively applied the properties b) and c). The original form 
of series (26) then has the form 

R(8) = exp (- 8) foop exp (- L) [JO(I/11P - 1/12) + f1(I/11P - 31/12) + 
2 -/n8 3 

.0 48 

+ f2(I/11P - 51/12) + ... J dp. (27) 

From the properties of the Laplace transformation point a) in Table I results 

FIG. 3 

fO(I/11P - 1/12) =1= 0 for P> 1/12/1/11 

f1(I/11P - 31/12) =1= 0 for P > 31/12/1/11 

f2(I/11P - 51/12) =1= 0 for P > 51/12/1/11 

Approximative Solution of the E-function 
of the Dispersion Model Coupled with Ideal 
Mixing 
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As has been already mentioned, in the approximative solution only the first term 
of the series (22) has been taken into consideration. This means that the integral (27) 
must supply sufficiently accurate results for some values of Pe and q; when only the 
first term of the subintegral function is taken into consideration, i.e. the term 
fO(tfJl p - tfJ2)' From integral (27) is obvious that the accuracy of the calculation 
of this integral depends on the ratio tfJ 2/tfJ l' Thus with increasing ratio tfJ 2/tf; 1 de­
creases the number of terms which must be included into the calculation of Eq. (27) 
at the given accuracy. 

In our case the condition has been chosen 

(28) 

i.e. for 

q; ~(Pe q;) > 1 . (29) 

If the condition (29) is satisfied, then calculation of the function of residence time 
distribution by use ofEq. (24) gives quite accurate results. 

TABLE I 

Laplace Transformations 

b) l(~s) 

1 e)--
s + tfJl 

f) l(s) = 11(s) 12(s) 

o 0 ;£ tfJ2/tf;1 

f(tfJI B - tfJ2) B > tfJ2/tf;1 

tfJ2, tfJl > 0 

- -- P exp (- p2/4B) f(p) dp 1 fOCi 
2 ~(1tB3) 0 

f(B) exp (-tfJIB) 

~ [2 J~ exp (-tfJ~/4B) - (2tfJ2B + tfJl) . 
dB 1t 

. exp (tfJ1tfJ2 + tfJ~B) erfc (2 ~B + tfJ2 ~B)] 

exp(-tfJIB) 
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CONCLUSIONS 

A two-parameter dispersion model coupled with ideal mixing is proposed and the 
function of residence time distribution i.e. the so-called E-function of this model 
is derived by the method of generalised Heaviside Expansion Theorem and by the 
approximative procedure. 

Solution of the E-function of this model obtained by the method of generalised 
Heaviside Expansion Theorem in the form of the convergent series are Eq. (8) or (19). 
Convergence of this series is especially slow in the region of small values of e for 
large values of Pe. In such cases the E-function calculated as the sum of ten terms 
of the series (Eq. (8)) in the region of small values of e is decreasing and the E-func­
tion starts to have the expected dependence only for larger values of e, see Fig. 2. 

For q> close to the ratio Pe/(Pe + 4) and at the same time for large Pe numbers 
the solution by the method of generalised Heaviside Expansion Theorem (Eq. (8)) 
(calculated as the sum often terms of the series) is affected by a considerable numerical 
error in a relatively wide range of values e, see Fig. 2, curve for Pe = 30; q> = 0·8. 
It is obvious from these results that the range of applicability of the solution for 
the E-function calculated as the sum of ten terms of the series is relatively limited. 
Though for small values ofPe number the solution obtained by the method of general­
ized Heaviside Expansion Theorem (calculated as the sum of ten terms of the series) 
gives correct results, problems related with its numerical calculation are frequently 
a great disadvantage in practical application of this solution. As is given in this 
study, in the calculation of the E-function by use of the infinite series (8), only ten 
terms of the series were taken into consideration. The use of ten terms suffices only 
in case when the product Pe q> < 15. In this case the solution obtained by the method 
of generalized Heaviside Expansion Theorem gives accurate results for all values 
e;?; o. 

The approximative solution given by Eq. (24) overcomes the problems related 
with the numerical calculation of the E-function by use of the solution obtained 
by the method of generalized Heaviside Expansion Theorem (Eqs (8) and (19)). 
The approximative solution holds for the whole interval of values q> E (0; I) in the 
region of small values of e the E-function increases from zero for any values of Pe 
(Fig. 3) and the numerical calculation of the E-function from Eq. (24) is considerably 
simpler than in the last case. 

Though the approximative solution of the E-function gives sufficiently accurate 
results (compare Figs 2 and 3) this solution is preferred for its simplicity to the exact 
solution only when the condition (29) is satisfied. 

The proposed model of dispersion flow coupled with ideal mixing is another 
theoretical contribution to mathematical modelling of flow systems. The model 
includes 2 parameters-volume fraction of the region of dispersion flow and the Pe 
number-which guarantees a greater flexibility of the model in comparison to single 
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parameter models of similar type in description of hydrodynamic conditions either 
experimental or industrial units. Similarly, as other published models also the two­
-parameter dispersion model given in this paper can also be succesfully applied 
in the description of complex unit operations. From Fig. 1, which gives the dispersion 
model coupled ideal mixing is obvious that the proposed model can be more frequently 
used in processes consisting of two different characters of fluid flow: ideal mixing 
-and plug flow. The resulting form of solution obtained by the method of generalised 
Heaviside Expansion Theorem or approximative solution of the E-function of the 
model is independent of location of the region of perfect mixing i.e. if this region 
is situated in the inlet or outlet part of the equipment. But the order: of individual 
regions is not arbitrary in reaction systems in which nonlinear processes with respect 
to concentration appear. 

LIST OF SYMBOLS 

..Q, a, al 

Cl ' C2 

C 
C 
fee) 
L 

quantities defined by Eqs (7), (9) and (20) 
concentration of tracer kg/m3 

dimensionless relative concentration of tracer 
Laplace transformation of function C 
function of residence time distribution 
length of the system (m) 

p variable 
Pe = wL/e Peelet number 
-s, sk Laplace variable 

residence time (s) 
x spacial variable (m) 
V volume of the system (m3

) 

w fluid velocity (m/s) 
Z= x /L 
o(e) 

dimensionless spacial variable 
Dirac's function 
longitudinal disperion coefficient (m2 /s) 

moment of the i-th order 
k-th root of the transcendent Eq. (12) 
volume fraction of the dispersion flow region 
dimensionless residence time 
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